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The stitching algorithm 

 

Let 𝑂𝑖(𝑥, 𝑦) be a subset of the object phase function to update from the ith reconstructed phase 

patch, 𝑆𝑖(𝑥, 𝑦), both of which are defined within a mask support where the CNN output is defined. 

The position of 𝑂𝑖(𝑥, 𝑦)  on the overall object is defined by the scanning position from the 

ptychography experiment. The stitching algorithm performs gradient descent on the error function, 

𝐸𝑟𝑟(𝑂𝑖),  

𝐸𝑟𝑟(𝑂𝑖) =
1

2
∑ ∑[𝑂𝑖(𝑥, 𝑦) − 𝜇(𝑂𝑖(𝑥, 𝑦)) − 𝑆𝑖(𝑥, 𝑦)]
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where 𝜇 calculates the mean value of 𝑂𝑖(𝑥, 𝑦). By minimizing Eq. (3), we make the ith phase object 

function be as close to 𝑆𝑖 as possible after zero-centering, since an overall phase constant cannot 

be recovered from the CNN. Taking the gradient with respect to 𝑂𝑖, we get 

𝜕Err(𝑂𝑖)

𝜕𝑂𝑖
∝ [𝑂𝑖 − 𝜇(𝑂𝑖) − 𝑆𝑖]       (4) 

and 𝑂𝑖 is updated by, 

𝑂𝑖,𝑛𝑒𝑤 = 𝑂𝑖 − 𝛽
𝜕Err(𝑂𝑖)

𝜕𝑂𝑖
          (5) 

where 𝛽 is a constant between 0 and 1. In this work, we chose 𝛽 = 0.1. Performing this update 

over all phase patches with 𝑖 = 1, … , 𝑁 marks one iteration of the stitching algorithm, where 𝑁 is 

total number of the phase patches. The algorithm usually quickly converges after several iterations. 
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Supplemental Figures 

 

 

Fig. S1. Schematic of residual layers used in the CNN architecture. Different strides used in the 

convolution filters are shown in parentheses. All filters are size 3×3. 
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Fig. S2. Examples of augmented data generation and CNN performance. (a) Random images from 

the internet used as pure phase objects to train a CNN. (b) Diffraction patterns generated from the 

phase objects in (a). (c) Perfect phase patches within the illuminated areas. (d) Corresponding 

phase patches independently retrieved from the square root of the diffraction patterns by a trained 

CNN without any iteration. 
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Fig S3. Procedure for generating real-space support and training data. (a) The magnitude of a probe 

function. (b) Real-space support based on the probe function. The phase object will only be 

predicted within this support, and any prediction outside of the support will not be used for 

stitching. (c) Cropped image of (b), removing non-trainable regions. Grids show individual pixels. 

(d) Oversampling (c) by a factor of 2. Cropping and oversampling in real space are optional steps 

to match the input/output dimensions of the CNN. (e) An example phase object. (f) A phase patch 

in the support predicted by the CNN. (g) Result of (f) after cropping non-trainable regions. (h) 

Result of (g) after oversampling the sample by a factor of 2. Any of (f), (g), or (h) can be used as 

training datasets for the CNN output given proper post-processing (padding and down-sampling) 

in the experiment. 
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Fig. S4. Effect of training data size on CNN phase retrieval. (a) L1 validation loss when trained 

with various training data sizes. (b-e) Stitched phase reconstructions after 100 epochs of training 

with 3e2, 3e3, 3e4, and 3e5 training data sizes, respectively.  
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Fig. S5. Comparison between CNNs and ePIE under various shot noise conditions. (a-c) Stitched 

CNN phase reconstructions from diffraction patterns with 3e2, 3e3, and 3e4 events per pattern, 

respectively. Insets show representative diffraction patterns. (d-f) Phase reconstructions using ePIE 

from diffraction patterns with 3e2, 3e3, and 3e4 events per pattern, respectively. 
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Fig S6. Deep learning CDI with probe recovery. (a) Schematic of CNN-based probe recovery. An 

initial probe function is created by randomly choosing 7 defocus and aberration parameters. The 

CNN retrieves the phase patches from pairs of adjacent diffraction patterns with the initial probe 

function. The cumulative L1 error within the overlapping regions is used as the loss function to 

optimize the defocus and aberration parameters for the next iteration of the probe function. (b) 

Initial guess of the probe function for the hBN sample, where the brightness and hue represent the 

magnitude and phase of the probe function, respectively. (c) Probe function recovered by the CNN. 

(d) Probe function reconstructed by ePIE. (e) Phase image of the twisted hBN interface retrieved 

by the CNN with the initial probe function. (f) Magnified view of the dotted square in (e). (g) 

Phase image of the twisted hBN interface retrieved by the CNN with the probe function in (c). (h) 

Magnified view of the dotted square in (g). Scale bars, 1 Å (b); 4 Å (e); and 2 Å (f). 

 

 

 

Fig. S7. Comparison of phase reconstructions using CNNs and non-iterative methods. Diffraction 

patterns were generated by a defocused probe of 6 pixels in diameter and a scanning step size of 4 

pixels to show the difference in reconstruction quality. (a) Ground truth image simulated as a phase 

object. (b-d) Phase image reconstructions by CNNs, Single Side Band ptychography, and Wigner-

Distribution Deconvolution, respectively. 
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Supplemental Tables 

 

Table S1. Experimental parameters of raw data sets used for deep learning CDI. 

Sample Twisted hBN Monolayer graphene 

[41] 

Gold nanoparticle 

Microscope TEAM I JEOL ARM200F TEAM 0.5 

Voltage (kV) 300 80 300 

Convergence semi-angle 

(mrad) 

17.1 31.5 17.1 

Scanning step size (Å) 0.25 0.13  0.26 

# probe positions 512×512 512×512 512×512 

Dwell time per probe 

position (ms) 

0.870 0.250 0.044 

Pixelated detector Gatan K3 JEOL 4DCanvas 4D Camera 

# detector pixels (before 

binning) 

512 × 512 66 × 66 576 × 576 

Dose (e- Å-2) 4.5 × 106 1.4 × 106 4.6 × 104 
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Table S2. Input parameters of experimental data sets used for deep learning CDI. 

Sample Twisted hBN Monolayer graphene 

[41] 

Gold nanoparticle 

# detector pixels (after 

cropping + binning) 

32 32 32 

Maximum collection 

angle after cropping 

(mrad) 

34.2 38.9 53.4 

Angular pixel size 

(mrad/pixel) 

1.07 1.21 1.67 

Training sample size 250,000 250,000 250,000 

Learning rate 1.e-4 1.e-4 1.e-4 

# of trainable parameters 9,445,408 9,445,408 9,445,408 

Epochs trained 100 100 100 

Prediction time (ms per 

1000 phase patches) 

0.519 0.523 0.458 
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Table S3. Probe and diffraction pattern parameters used for CNN-based probe recovery. 

Variable Value 

Binned detector dimensions (pixels) 32×32 

Probe semi-convergence angle (pixels) [3.2,12.8) 

C10ɑmax
2/λ (probe defocus) [-10.0,10) 

C12aɑmax
2/λ (probe twofold astigmatism) [-10.0,10) 

C12bɑmax
2/λ (probe twofold astigmatism) [-10.0,10) 

C21aɑmax
3/λ (probe coma) [-10.0,10) 

C21bɑmax
3/λ (probe coma) [-10.0,10) 

C23aɑmax
3/λ (probe threefold astigmatism) [-10.0,10) 

C23bɑmax
3/λ (probe threefold astigmatism) [-10.0,10) 

RMSE of phase in mask [0.,0.75) 

Events per diffraction pattern [3000,10000) 

CNN input dimensions 32×32×3 

Training sample size* 1,500,000 

*The training sample size is large because the trained CNN is universal and can recover both the 

probe function and the phase image from the diffraction patterns under different experimental 

conditions.    

 


